Long-Term Prediction, Chaos and Artificial Neural Networks. Where is the Meeting Point?
نویسنده
چکیده
paper presents the advances of a research using a combination of recurrent and feed-forward neural networks for long term prediction of chaotic time series. It is known that point-to-point, long term prediction for chaotic time series is not possible; however, in this research we are looking for ways to build dynamical systems using artificial neural network, that contain the same characteristics as the unknown systems producing a time series. The created systems should be such that they have chaotic invariants similar to the ones presented in the time series. Being able to create such system, the bounds of the predictions may be defined. We present some general concepts related to chaos, dynamical systems and artificial neural networks and present one model that, if not able to predict yet, is able to autonomously oscillate in bounded limits and in a chaotic way. Some experimental results and future work is also presented.
منابع مشابه
Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملPrediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO2 Injection Using ANN & ANFIS Models
Although CO2 injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special imp...
متن کاملTHE USAGE OF ARTIFICIAL NEURAL NETWORKS IN HYDRODYNAMIC ANALYSIS OF FLOATING OFFSHORE PLATFORMS
Floating offshore structures, particularly floating oil production, storage and offloading systems (FPSOs) are still in great demand, both in small and large reservoirs, for deployment in deep water. The prediction of such vessels’ responses to her environmental loading over her lifetime is now often undertaken using response-based design methodology, although the approach is still in its...
متن کاملNeural Networks in Electric Load Forecasting:A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Engineering Letters
دوره 15 شماره
صفحات -
تاریخ انتشار 2007